
-A12 N EXCUTSINSTRTGE OF TECWIDET SNLRNSU
INFORMATION AMD DECISION SYSTEMS J1 M OREYET ET AL.

UNCLMSSIFIEO JAN 96 L DS-P-1739 NMft4-S4-K-0519 F.G 5/1 ML

'El'."'moomomo

IIII& 0 33 2

1.0 U1-

1.~25 Wi' 4 11111 6

- MICROCOPY RESOLUTION TEST CHART

NA IONAL BUREAU O STANDARD
S
' 1% A

V..

L°.

OIC FiiL COP~Y

JANUARY 1988 LIDS-P-1739

EXECUTION STRATEGIES FOR PETRI NET SIMULATIONS*CM
0)

Jean-Louis M. Grevet **
Louise Jandura *DJohn Brode ***

Alexander H. Levis ** D T C
ELECTE
MAR 0 7 1988

AA ABSTRACT

Petri Nets can provide the means for modeling and analyzing asynchronous and concurrent
operations. In some applications, such as the modeling and analysis of information processing
and decision making organizations where different decisionmakers may use different protocols
to perform their tasks, it is often necessary to use simulation to study the dynamic behavior of
the system. However, when implementing a simulation system on a digital computer capable of
handling large scale nets with complex protocols, the automation of the firing process poses
problems because a computer executes instructions sequentially. A simulation system based on
Predicate Transition nets has been designed which has imbedded in it as choices a number of
rules for handling concurrency, confusion, and token colors. These rules may represent either
the actual protocols, or ways of handling some model implementation problems. Several
examples illustrate the effect of different rules on the execution of the net and on the final
markings.

*This work was carried out at the MIT Laboratory for Information and Decision Systems with
support provided in part by the Office of Naval Research under contracts nos.
N00014-84-K-0519 (NR 649-003) and N00014-85-K-0782 and in part by the National
Science Foundation under grant no. SES84-19885.

* Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139, USA

* Meta Software Corp., 150 CambridgePark Drive, Cambridge, MA 02140, USA

i Appoved ior ' i ""'"

Disttibuti3 8 8 2 1 7 00"
11 l , II % r

INTRODUCTON

Petri Nets, which are bipartite directed graphs, can provide the means for modeling and

analyzing asynchronous and concurrent operations. They prove particularly useful for the

analysis of information processing and decision-making organizations.[1], [2], [3]. Up to

now, most of the theoretical developments in which a Petri Net representation has been used

have addressed static characteristics of the organizations, e.g., the organizational structure.

However, there is a need to investigate the dynamics of decision-making processes and, in

order to do so, it is practical to use simulation.

When implementing a simulation system of Petri Nets on a digital computer capable of

handling large scale nets with complex protocols, the automation of the firing process presents

problems because the computer executes instructions sequentially. It is therefore necessary to

define strategies for deciding in which order concurrent events must take place. In some cases,

the execution of the net may be very sensitive to this ordering.

This paper introduces a simulation system of Petri Nets, the MIT/SIM system, which has

been implemented on an Apple Macintosh Plus using the Design Open Architecture System

(OADS) from Meta Software Corporation [4] and which can be applied to organizational

design and evaluation problems.

The MIT/SIM system is a discrete-event simulation system and several execution strategies

have been incorporated in it in order to automate the execution of the nets of interest. This

paper presents these different execution strategies and shows, through the application of the

system to specific examples, how they can lead to different final states.

The paper is organized as follows: in the second section, a description on the Petri Net

formalism and its application to the modeling and analysis of decision-making organizations is

given. The different execution strategies of the simulation system are presented in the third

section. In the fourth section, several examples are investigated. Finally, conclusion are -

presented in the last section.
0

PETRI NET FORMALISM AND ORGANIZATION THEORY

Ordinary Petri Nets consist of places, transitions, and arcs which connect places to

t ' c:, 2., Odc

2 U'-'NduI

2

transitions and vice versa. The state of the system is denoted by its marking, i.e., the tokens
present in each place. A transition may fire, if it is enabled - if it has tokens in all its input

places. When a transition fires, it removes tokens from its input places and creates tokens in its

output places, thus changing the marking of the net. The governing rule for the execution of a

Petri Net is that a transition may fire when it is enabled.

An example of Petri Net is shown in Figure 1. Places are represented by circles and
transitions by bars. The marking can be illustrated graphically by writing the number of tokens

of each place in the circle that represents the place as shown in Fig. 1; empty places are left
blank. In this example, transitions ti, t2 and t3 are all enabled.

P2

P tl P 7 t 2

Fig. I Marked Petri Net

A Petri Net is a formal model of information flow. The tokens can be considered as
symbolic information carriers; the places are the nodes where those tokens can stay without

being processed; the transitions are the events that perform some transformation on the

information.

When a token enables concurrently several transitions, there is a conflict. In Figure 1, t2
and t3 are in conflict because the token in P7 enables both transitions. A switch is a transition

which resolves conflict situations. It is thus a transition with multiple output places and some
decision rule according to which each token is routed toward one and only one of the output

places. The introduction of a switch sI in the Petri Net of Fig. I is illustrated in Figure 2.
3,J

',

P2

Fig. 2 Pet2i Net with switch

A Timed Petri Net (TPN) is a Petri Net in which a firing time is associated with each

transition of the net. The firing time takes discrete values when the execution is simulated on a

computer. A TPN allows the discretization of the process in units of time so that the state of the

system can be observed at each instant of time. When a transition initiates its firing, it removes
immediately the tokens from the input places, but inserts tokens in the output places only when

an amount of time equal to its firing time has elapsed. During the firing of the transition, if the

transition is enabled again by the presence of tokens in all its input places, the transition may

fire again. One can put a constraint of the firing rules of a Timed Petri Net by allowing

transitions to fire only when they are not already executing.

A Predicate Transition Net is a Petri Net where tokens are distinguishable with respect to

certain attributes.[5] The rules of execution of the net can take explicitly into consideration the
characteristics of the tokens to determine whether or not transitions can be fired.

An information processing and decisionmaking organization consists of a team of

decisionmakers that receive and execute tasks, i.e., the organization receives an input x from

the external environment and produces a response y. The Petri Net model of the organizations

being considered has a unique source place pso where the activation of a token corresponds to

the appearance of an event in the environment that must be handled by the organization. The

place Prs is a resource place, used to model the limited number of resources that the

organization can use to perform the tasks (Fig. 3).

4

M-L

Prs

Fig. 3 Interactions DMO - Environment

A basic assumption of the model of coordination in decision-making organizations [6] is

that, at any internal stage of the decision-making process, a decisionmaker can discriminate

between different items of information on the basis of three characteristics:

- the time T. at which the inputs that these items of information represent entered the

organization.

- the time Td at which the item of information entered the internal stage where it is

currently.

- the class C associated with any item of information by the previous processing stage.

Therefore, each token is assigned a color which corresponds to the triplet (Tn, Td, C). In

this context, the rule of enablement of transitions is that all its input places have tokens which

have the same attribute Tn.This rule requires that decisionmakers, when interacting, refer to

the same event in the environment. The different resources that the organization has are not

distinguishable because it is assumed that any organizational resource can be used to process

any input. Thus, tokens in resource places have the color € and they are not distinguishable.

SUMULATION OF PETRI NETS

The governing rule for the execution of a Petri Net is that a transition may fire when it is

enabled. This means that no execution rule requires that a transition enabled by a certain

marking must actually fire. Therefore, if one wants to automate the execution of a Petri Net,

55

%'

rules must be implemented in the system to resolve all the situations where choices have to be

made. For instance, if two transitions may be fired concurrently according to the net

formalism, it is necessary to order their firing to simulate the sane step on the computer. In the

same way, when tokens are distinguishable, if a place contains two tokens that enable a certain

transition, there must exist some rule to decide which one will be actually removed at the next

stage. In some cases, the execution of the net may be very sensitive to these orderings.

In this section, different rules that have been implemented in the MIT/SIM system and that

address issues of conflict, concurrency, and token selection are introduced.

(i) conflict issues : In this case, several transitions are enabled and the firing of one of
them will disable the others. A rule must decide which transition will actually fire. For

conflict situations modeled with a switch, as shown in Figure 4, five rules have been

implemented:

- user selection: the user decides what transition will fire by selecting the corresponding

input place.

- random selection: the selection is done randomly.

- probability: the selection is done according to a probability distribution defined in

the arcs connecting the switch to its output places.

- priority order: all tokens are routed to the output place of the switch which has not

reached its maximum capacity and according to a priority order

defined in the arcs connecting the switch to its output places.
- token priority: a token is routed through the arc that has the same priority number

as the class of the token. This can be used for simulating Predicate
Transition Nets where tokens are assigned a class number.

(ii) concurrency issues : Concurrency occurs when several transitions can fire at the same

instant. Since the computer executes the sequence of events linearly, it is necessary to

implement rules to decide in which order the firings will be executed. Four rules have

been implemented to resolve concurrency issues:

6 6

P 2 t 1P5

p 4 t3 P7

16

Fig. 4 Petri Net with Switch

- user selection: the user decides what transition will fire next.

- random selection: the selection is done randomly.
- Depth-first: the execution is accomplished by considering first for the next firing

the set S of transitions enabled by the tokens produced by the last
firing. However, if the firing of these transitions requires the
resolution of conflicts involving transitions that do not belong to S,
these conflicts must be resolved.

- Breadth-first: the execution requires the firing of all enabled transitions at a given
marking M before considering new enablements. If there exists a

conflict for these transitions, it must be resolved; otherwise, any
conflict involving a transition not enabled for the marking M must not
be resolved and the transition enabled for the marking M will fire.

In the example of Figure 5, we assume that P, and P2 both contain a token and that all
transitions have zero firing times. Furthermore, we assume that when concurrency occurs the

place with the smallest index is considered first.

Then, the sequences of transition firings will be the following:

- depth-first: t1, t11 , t'l1 , t12, t'12, t2, t2 1, t'21, t22, t' 22.
- breadth-first: t1, t2 , t 11, t12 , t2 1, t22 , t'1 1, t'12 , t'21, t' 22.

7
S

~ Vsw ~.p 5'.*~ -~ j% ---IS A

p ll i| H iI

2

p'2 22 p 22 t 22 P 22

Fig. 5 Depth-first vs. Breadth-first

In this context, a step under the depth-first rule corresponds to the firing of all transitions

for a branch, e.g., t1 , t1 1, t', I in the example above. A step under the breadth-first rule

corresponds to the firing of all transitions at a particular instant, e.g., t1 , t2. ",

If a non-zero firing time is assigned to these transitions, the depth-first and breadth-first

rules are no longer necessary since the time index contributes to the ordering of the sequence of

firings that takes place. In Timed Petri Nets, a step corresponds to the firing of all the

transitions that must occur at the same time.

(iii)Token selection: Tokens can be marked with attributes on the basis of which one can

define selection rules to decide which tokens should be fire when several tokens are in a

place. Four types of rules of selection have been considered:

- discriminate with respect to the attribute Tn.

-discriminate with respect to the attribute Td.
- discriminate with respect to the attribute C.

- combine different rules of the previous types.

The following rules have been implemented as menu options:

8

1/ FIFO: The token with the lowest Tn is selected.

2/ LIFO: The token with the highest Tn is selected.

3/ LOCAL FIFO (LFIFO): The token with the lowest Td is selected.

4/ LOCAL LIFO (LLIFO): The token with the highest Td is selected.

5/ PRIORITY: The selection is done according to priorities based

on the attribute C.

Thus, when a place contains several tokens that can be fired by a transition, one of these

rules must be implemented to determine which token will be actually removed by the next

firing. When tokens are not distinguishable, as in Ordinary Petri Nets, such rules are no longer

needed. They are therefore specific to the execution of Predicate Transition Nets. 1

The execution of a Petri Net with the MIT/SIM system requires that these different rules be

defined in advance. The purpose of the next section is to illustrate with three examples the kind

of results that are obtained when different rules are used.

APPLICATION

Breadth-first and Depth-first Rules

A Petri Net with its initial marking is shown in Figure 6.
P5 t 4 P 6

Pl t1 P2 t2 p3 t 3 p4

Fig. 6 Initial marking for Example I

It is assumed that all the transitions in this net have zero firing times which implies that all the

firings that can occur are concurrent. The automation of the execution of this Petri Net requires

that a rule of ordering of the firings be defined. As described in the previous section, one can

implement the breadth-first and depth-first rules.

9

' "t ' 1 ' / ' "' -' r-* I -"4 €,'.r' ' 4:"" -',"- "' "" ,-. , ,.. .,y" ,.'% - .*

If we assume that t1 fires first, the sequence of firings with the breadth-first stragegy is : tj,

t4, t2. The transition t3 cannot fire because the place p5 no longer contains a token. The first

step of the execution corresponds to the firings of transitions tl and t4 , i.e., the transitions

enabled for the initial marking. The second and final step of the execution corresponds to the

firing of transition t2, i.e., the firing of the unique transition enabled by the marking resulting
from the initial step. The final marking of the net is shown in Figure 7.

P5 t 4 P 6

PI p 2 P3 3 P4

Fig. 7 Final marking with breadth-first rule for Example 1

If the depth-first rule is invoked and if t fires first, the token produced in P2 is then
immediately fired by t2 which produces a token in p3. At this stage, a conflict occurs between

t4 and t3 In accordance with the depth-first rule, this conflict must be resolved. If we assume

that t3 is granted priority, then the final marking is the one shown in Figure 8. The unique step

of the process corresponds to the sequence of firings: t1, t2, t3.

P5 t4 P6

Pl 1 P2 t2 P3 t 3 P4

Fig. 8 Final marking with depth-first rule for Example 1

10

4

"

Comparison of the final markings in Figs. 7 and 8 demonstrates that the breadth-first and

depth-first rules can lead to different results. I

Confusion

The Petri Net of Figure 9 illustrates the occurence of confusion. It is assumed that all

transitions have zero firing times.

Pl tl P 2

p 3,

t P5

3 P6

P 4

Fig. 9 Example 2: Confusion ,

With the breadth-first rule, if t1 fires first, only places P3 and p4 are considered for the next

firing. No conflict needs to be resolved and t3 fires; the final marking is shown in Figure 10.

The unique step corresponds to the firing of t and t3.

,Il

t pp

3 P6

Fig. 10 Example 2 - final marking with breadth-first rule

11
V

If the adopted rule is depth-first, the place P2 is considered first for the next firing: it is

possible to implement the pull-out strategy, i.e., transition t2 will fire without any conflict

resolution. The final marking of the net is illustrated in Figure 11.

Pl t P2

2I

S-.

t p N

33 ,

Fig. 11 Example 2 -- final marking with depth-first and pull-out rule

The unique step in this case corresponds to the firing of t1 and t2 . If the pull-out rule is not

implemented, the conflict between t- and t3, and the final marking will correspor.d to one of the

two situations illustrated in Figures 10 and 1 1.This example shows again that the depth-first

and breadth-first rules can lead to different results.

Decision-making Processes

This example concerns the analysis of the dynamics of decision-making processes; the

rules implemented are based on token selection. The Petri Net model of the organization

considered in this example is shown in Figure 12. The organization consists of two

decision-makers who receive information for a common task. The commander DM 2 assesses

the data that he receives from the environment by using always the same algorithm. In the same

way, the subordinate DM1 assesses the input from the environment with one algorithm. Then,

he sends some information resulting from this assessment to his commander. The latter fuses '1
his own result with this information and, on this basis, produces a command by using always
the same algorithm. In turn, this command is sent to the subordinate DM 1. Eventually, DM1 is

responsible for producing a response on the basis of the command that he receives and of the

results of his own assessment. This model could describe the relationship between the home

office and a branch of a corporation 17].

12

Ir

* m . **,I** " 4*

P12 DMl

P2 SA1 P4 C1 p RS po

P51 P
m

po t ,3

SA,p IF2 P9 RS 2P6 2 2

P13

Fig. 12 Petri Net model of two-person organization

In this model, (a) each token representing an item of information is distinguishable with
respect to its time of entry in the net, Tn, its time of entry in the place where it stands, Td, and
the class C of inputs associated with it; (b) a rule of selection of tokens, e.g., FIFO or LIFO, is
associated with each place; and (c) the rule of enablement of transitions requires that tokens
with the same time of entry in the net Tn be in the input places.

The analysis of any Predicate Transition Net that includes time as one of the attributes is a
complicated process that depends on the specific grammar used in executing the net. In such a
context, simulation may be used to yield insight on the dynamics of the process from three

standpoints:
(i) evaluation of measures such as the throughput rate, response time and synchronization

for different scenarios. The quality of the performance of an organization is
scenario-dependent: Two organizations can exhibit the same performance for certain
scenarios and achieve very different levels for other scenarios.

(ii) evaluation of local measures of organizational performance. The dynamics of queues of
items of information for different decisionmakers and at different stages of the
decision-making process can be observed.

13

(iii)evaluation of measures over a limited period of time, e.g., during periods of high or low

activity. 4

It will be assumed that in all stages, but the Situation Assessment (SA) stage, the

decisionmakers use the LFIFO rule with priority given to the items of information that are in

their memory places, i.e., those places that are part of the internal model of the decisionmaker

(in this case, p4 and P7 for DM I , and P6, P9 for DM2.) Thus, for transitions IF 2, RS2 , CI1,

RS1 , tokens are fired in the order with which they enter the memory place of their preset.

Different conditions for the SA stages will be considered. Before having assessed any of

the inputs that they have received and that they must process, the decision-makers may have to

discriminate between them because they cannot perform their assessment on all of them at the

same time: only one input can be assessed at a time.

The transitions in this example are associated with non-zero firing times. The processing

times of the various stages, measured in some time unit, are presented below; tPW denotes the

input partitioning stage.

Transition: tp r SA 1 SA 2 C11 IF 2 RS 1 RS2

Time: 1 10 10 10 10 10 10

The scenario corresponds to an infinite queue of inputs, i.e., to the case where the

organization always uses all its resources. The initial marking of the resource places is:

M0 (p 1)=4; M(p 2)=2; M(p 3)=2.

case 1: Both SA 1 and SA 2 use the LFIFO rule.

cue 2: SA 1 uses the LFIFO rule whereas SA 2 uses LLIFO.

case 3: SA 1 uses the LLIFO rule; SA 2 uses LFIFO.

case 4: Both SA 1 and SA 2 use the LLIFO rule.

14

_- 0

The time of entry of an input in the organization, Ti, is the time at which the sensors begin

to process it, i.e., in Petri Net formalism the time at which the transition tpa fires. The time of

leaving from the organization, To, is the time at which the organizational response is obtained,

i.e., in Petri Net formalism the time at which a token appears in the sink place. The delay, T, is

the difference To-Ti. The quantity S is a measure of synchronization [6]; it measures the

additional time tokens spend in places P4 and P6 waiting for the transitions to be enabled. S is

measured for each token and is the sum of the values of the measure for IF2 and CI1 .

The results for Ti , To, T as well as for the synchronization S for the first ten inputs which

enter the net in each of these four casesare presented in Table 1.

TABLE I Synchronization and Delay - Cases I to 4

input# case I case2 case3 case4
- - - - -m m

T T T S oT S T To T S To T S
1 0

1 0 51 51 20 0 51 51 20 0 51 51 20 0 51 51 20
2 1 61 60 20 1 1------ --I - -

3 2 101 99 40 2 101 99 40 2 101 99 20 2 101 99 40
4 3 111108 40 3 151 148110 3 131 128 90 3 61 58 20

5 51 151100 40 51 201 150 90 51 161110 30 61 151 90 40

6 61 161100 40 101 251150 90 101 191 90 30 101 20110040

7 101 201 100 40 151 301 150 90 131 221 90 30 151 251 10040

8 111 211 100 40 201 351 150 90 161 251 90 30 201 30110040

9 151 251100 401251 401 150 90191 281 90 301251 35110040

10 161 261 100 40 301 451 150 90 221 311 90 30 301 40110040

The results obtained in case I are the same as in the case where the tokens have no

identity. The steady-state of the process is K-periodic [3] with a period of one. It is reached

after the sixth input and is characterized by a constant delay and synchronization. The same

conclusions can be drawn in case 2, case 3 and case 4: all three processes are K-periodic with a

period of one. In case 2, the steady-state is reached after the fifth input whereas it is reached

after the sixth input in case 3 and case 4. However, one can see that the three tokens with
attribute Tn = 1 are blocked in places P3, P4 and P5, respectively. The processing of the

corresponding input is blocked as shown in Table 1. This happens because there are always

is

......... b

two tokens in the input places of SA1 and SA2 where the LFIFO and LLIFO rules are used.

In the steady-state, the delays for each input are identical in case 1 and case 4. In case 2,

this delay increases by 50 percent. In case 3, the delay is reduced by 10 percent. However,
since in the situations where a LLIFO rule is used the processing of one input is blocked, the

delay for this input is infinite and the organization can use only three resources out of four for

the other inputs. Thus, the thoughput rates decrease . When the input represents a threat for
which a response must be provided in a certain window of opportunity [8], the LLIFO rule will

degrade considerably the accuracy and timeliness of the organization.

In case 1, the synchronization of the organization is equal to 40 units of time in the

steady-state. In case 2, it is equal to 90, a considerable degradation. In case 3, the

synchronization is equal to 30 units of time in the steady-state. It represents therefore an

improvement with respect to case 1. In case 4, the synchronization in the steady-state is the

same as in case 1. Nevertheless, one must consider also the individual tokens that are blocked

during the processing. In case 2 and case 3, the synchronization for the second token degrades

considerably with respect to case 1. Indeed, if DM 1 uses the LFIFO rule and DM2 the LLIFO
rule, the item of information for which the process is blocked is in the input place of the SA
stage of the latter, whereas it has been assessed by DM1 and is in the memory place of his CI
stage. Thus, the measure S for this input is infinite. The same situation occurs when DM1 uses

the LLIFO rule and DM 2 the LFIFO rule but, in this case, the degradation of the

synchronization is due to the fact that DM 2 waits indefinitely in the IF stage for the data from

DM1 to arrive. In case 4, the second input is also blocked, but the two corresponding tokens

remain in the input places of SA1 and SA2: it implies that none of the decision-makers will wait

for the data from the other member for this input. From this standpoint, the synchronization of

the activities for this input does not degrade.

The processing of the inputs in these four cases took place for a configuration in which e
there were four organizational resources and two resources for each decisionmaker. Table 2 Ile

contains the results for cases F to 4' in which the organizational resources are increased by one

unit:

MO(p 1) = 5; MO(p 12) = 2; MO(p 13) =2.

All other conditions remain the same.

16

•[

TABLE 2 Synchronization and Delay - Cases 1' to 4'

input # case I' case 2' case 3' case 4'

T T T S o S TiToTT IS To TTS
1 0

1 0 51 51 20 0 51 51 20 0 51 51 20 0 51 51 20

2 1 616020 1 - - -I-- -
3 2 101 99 40 2---- 2 -- - 2- - -

4 3 111108 40 3---- 3 -- - 3 101 98 20
5 4 151147 40 4---- 4 -- - 4 61 57 40

6 51 161 110 40 51---- 51 --- 61 151 90 40
7 61 201 140 40 101 201 100 40
8 101 211 110 40 151 251 100 40
9 111 251 140 40 201 301 10040

10 151 261 110 40 251 351 100 40

In case ', the process is K-periodic of period 2. In the steady-state, the thoughput rate and

the synchronization are identical to case 1. In case 4', the process has a period equal to one.

The synchronization and thoughput rate are identical to case 4. However, the second and third

inputs remain blocked in the input places of the SA transitions. Thus, the organization can use

only three out of its five resources to process the remaining inputs. In case 2' and case 3', the

performance of the organization is totally degraded by the fact that the whole process is

blocked. The execution has reached a deadlock, i.e., no transition can fire. As it is shown in

Table 2, five inputs remain in the organization which cannot produce a response for any of

them.

Because DM I and DM 2 do not use the same rules, the two items of information sent by

DM1 to DM2 after the Situation Assessment stage do not correspond to the inputs that DM2 is

processing. Thus, since DM 2 has to wait for the information that he needs in order to proceed

and since DM1 has to wait for the commands from DM 2 to arrive, the activities of both

decision-makers are blocked. This illustrates a situation where the lack of coordination leads to

a severe degradation of the effectiveness of the organization.

17

'q 'n)

Figure 13 shows the Petr Net representation of the state of the organization when the

deadlock occurs.

p11

P12 EMA

p

P2 SAp I F P II P RS I p1PO 01par P -

P13

Fig. 13 Two-Person Organization with Deadlock

Places p5 and P6 contain tokens that do not have the same attribute Tn, and, consequently,

rule 2 of enablement of transition IF2 is not satisfied. Since the resource places P12 and P13 are

empty, transitions SA1 and SA2 cannot fire and the tokens that have the same attribute Tn as the

tokens in P6 are blocked in P2.

This type of situation would never occur if SA1 and SA2 used the LFIFO rule for the

sequencing of the inputs: indeed, the interactional transitions would always fire as soon as the

places of their preset contain a token, since these tokens would necessarily have the same

attribute Tn.

CONCLUSIONS

Problems that appear either when implementing a Petri Net simulation on a digital

computer, or modeling decisionmaking organizations with complex protocols have been

discussed and alternative approaches to their resolution have been presented. These approaches

18

have been implemented in the form of rules that can be applied globally or locally at each node

of a net. Several examples have been presented to illustrate the effect these rules can have on

the execution of a net, its final marking, and its dynamic behavior.

REFERENCES

[1] A. H. Levis, "Information Processing and Decisionmaking Organizations: A
Mathematical Description," Large Scale Systems, Vol.7, 1984, pp. 151-163.

[2] P. Remy and A. H. Levis, "On the Generation of Organization Architectures Using Petri
Nets," Proc. 8th European Workshop on Applications and Theory of Petri Nets, t

Zaragoza, Spain, 24-27 June, 1987.

[3] H. P. Hillion and A. H. Levis, "Timed Event-Graph and Performance Evaluation of
Systems," Proc. 8th European Workshop on Applications and Theory of Petri Nets,
Zaragoza, Spain, 24-27 June, 1987.

[4] Open Architecture Development System Reference Manaual, Design, Meta Software
Corp., Cambridge, MA, March 1987.

[5] H. J. Genrich and K. Lautenbach, "Systems Modeling with High-Level Petri Nets,"
Theoretical Computer Science, No. 13, pp. 109-136, 1981.

[6] J. L. Grevet, "Decision Aiding and Coordination Decision-Making Organizations," S.M.
Thesis, LIDS-TH-1730, Laboratory for Information and Decision Systems, MIT,
Cambridge, MA, January 1988.

[7] K.L. Boettcher and A. H. Levis, "Modeling and Analysis of Teams of Interacting
Decisionmakers with Bounded Rationality," Automatica, Vol. 19, No. 5, November
1983.

[8] P. H. Cothier and A. H. Levis, "Timeliness and Measures of Effectiveness in Command
and Control," IEEE Trans. on Man, Systems, and Cybernetics, SMC-16, No. 6,
Nov./Dec. 1986.

19

19

LA(\

"MA,-r N &.? 5, 'N,.*611LS~ ~

